Back to Requirements
Data-SMARTS Requirement
Data Cleaning
The system must provide comprehensive data validation, quality assurance, and cleaning capabilities to ensure data integrity throughout the collection and processing lifecycle.
Required Capabilities
Format Validation
Ensure data matches expected formats
Range Checks
Verify values within acceptable ranges
Duplicate Detection
Identify and resolve duplicate records
Audit Trails
Track all changes with full history
Detailed Requirements
DQ-1
Real-Time Validation
- Field-level validation during data entry (format, range, required fields)
- Cross-field consistency checks (e.g., age vs grade level)
- Immediate feedback to data collectors on validation errors
- Configurable validation rules per assessment type
DQ-2
Duplicate Detection
- Automatic detection of duplicate records based on configurable criteria
- Fuzzy matching for name variations and data entry errors
- Duplicate resolution workflow with merge capabilities
- Prevention of duplicate submissions through unique identifiers
DQ-3
Anomaly Detection
- Statistical outlier detection for assessment scores
- Pattern analysis to identify suspicious data (e.g., identical scores)
- Flagging of unusual response patterns for review
- Configurable thresholds for anomaly alerts
DQ-4
Data Completeness
- Monitoring of required field completion rates
- Identification of partially completed assessments
- Tracking of missing data by school, region, and monitor
- Alerts for incomplete data submissions
DQ-5
Review Workflows
- Multi-level review and approval process for flagged data
- Assignment of review tasks to supervisors
- Ability to correct, approve, or reject questionable data
- Escalation paths for unresolved data quality issues
DQ-6
Audit & Traceability
- Complete audit trail of all data modifications
- Recording of original values before any changes
- User attribution for all edits and approvals
- Timestamp tracking for data lifecycle events
Validation Pipeline
┌─────────────────────────────────────────────────────────────────────────────────┐
│ DATA QUALITY PIPELINE │
└─────────────────────────────────────────────────────────────────────────────────┘
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Data │ │ Real-Time │ │ Server │ │ Review │
│ Entry │────▶│ Validation │────▶│ Validation │────▶│ Workflow │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
│ │ │ │
│ ▼ ▼ ▼
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ • Format │ │ • Duplicate │ │ • Flagged │
│ │ • Required │ │ • Anomaly │ │ Records │
│ │ • Range │ │ • Cross-ref │ │ • Approval │
│ └─────────────┘ └─────────────┘ │ • Rejection │
│ └─────────────┘
│
│ ┌──────────────────────────────────────────────────────┐
└────────▶│ AUDIT LOG │
│ • Original values • User • Timestamp • Action │
└──────────────────────────────────────────────────────┘
See Our Implementation
The Universal Learning Portal backend implements these data quality requirements with comprehensive validation and audit capabilities.
View Backend System